2006 Vol. 8, No. 21 4907–4910

Metal-Catalyzed Regioselective Oxy-Functionalization of Internal Alkynes: An Entry into Ketones, Acetals, and Spiroketals

Bo Liu and Jef K. De Brabander*

Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038

jef.debrabander@utsouthwestern.edu

Received August 9, 2006

ABSTRACT

$$R^{2} = (CH_{2})_{n}OH$$

$$R^{1} = CH_{2}OH$$

$$R^{1} = CH_{2}OH$$

$$R^{1} = CH_{2}OH$$

$$R^{2} = CH_{2}OH$$

$$R^{2} = CH_{2}OH$$

$$R^{2} = CH_{2}OH$$

$$R^{2} = CH_{2}OH$$

$$R^{3} = CH_{2}OH$$

$$R^{4} = CH_{2}OH$$

$$R^{5} = CH_{2}OH$$

Platinum(II) and an unusual cationic gold(I) complex were identified as mild catalysts for the room temperature cycloisomerization or tandem hydroalkoxylation/acetal formation of unactivated internal alkynols. Under the appropriate conditions, 5-endo, 5-exo, 6-endo, and 6-exo cycloisomerization modes are all available.

The oxy-functionalization of internal alkynes (hydration, hydroalkoxylation)¹ represents a potentially attractive strategy for constructing ketone, acetal, or spiroketal substructures found in many natural products (Figure 1). Alkynes are

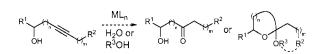
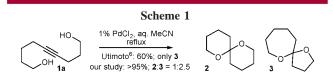


Figure 1. Oxy-functionalization of internal alkynes.

relatively inert toward many reaction conditions, a characteristic that can be leveraged to delay installation of valuable but rather sensitive δ -hydroxyketone or acetal functionality to later stages of the synthesis via C-O bond formation.

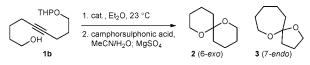
Herein, we report efficient Pt^{II}- and Au^I-catalyzed regioselective oxy-functionalizations of unactivated internal alkynols.^{2,3}


In contrast to the situation with terminal alkynes,¹ the addition of water or methanol to nonactivated and unbiased internal alkynes suffers from low regioselectivity.^{4,5} A potential solution to this problem emerged from pioneering studies by Utimoto showing that Pd^{II}-catalyzed intramolecular hydroalkoxylation of internal alkynols provided cycloisomerization products with high regioselectivity.^{6,7} The same

⁽¹⁾ For selected reviews, see: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. *Chem. Rev.* **2004**, *104*, 3079. (b) Weyershausen, B.; Dötz, K. H. *Eur. J. Inorg. Chem.* **1999**, 1057. (c) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. *Angew. Chem., Int. Ed.* **2004**, *43*, 3368.

⁽²⁾ For recent examples of intramolecular hydroalkoxylations with terminal alkynols, see: (a) Barluenga, J.; Diéguez, A.; Fernández, A.; Rodríguez, F.; Fañanás, F. J. Angew. Chem., Int. Ed. 2006, 45, 2091. (b) Genin, E.; Antoniotti, S.; Michelet, V.; Genêt, J.-P. Angew. Chem., Int. Ed. 2005, 44, 4949. (c) Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J.-P. J. Am. Chem. Soc. 2005, 127, 9976. (d) Elgafi, S.; Field, L. D.; Messerle, B. A. J. Organomet. Chem. 2000, 607, 97. With electronically biased aryl alkynols: (e) Li, X.; Chianese, A. R.; Vogel, T.; Crabtree, R. H. Org. Lett. 2005, 7, 5437. (f) Messerle, B. A.; Vuong, K. Q. Pure Appl. Chem. 2006, 78, 385. (g) Hashmi, A. S. K.; Schwartz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285. (h) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409.

⁽³⁾ For an attractive alkyne activation approach to the acetal/spiroketal framework via a gold(I)-catalyzed tandem propargyl Claisen rearrangement/ heterocyclization, see: Sherry, B. D.; Maus, L.; Laforteza, B. N.; Toste, D. F. *J. Am. Chem. Soc.* **2006**, *128*, 8132.


report also discloses the PdCl₂-catalyzed cycloisomerization of 4-nonyne-1,9-diol (**1a**) to yield selectively [4.6] spiroketal **3** in 60% yield (Scheme 1).⁸ In our hands, however, a 2.5:1

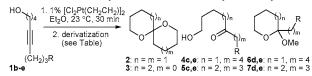
mixture of [4.6] and [5.5] spiroketals **3** and **2** was consistently obtained. We did not find this surprising considering that reduced selectivity could stem from the fact that both primary alcohols could react at comparable rates (i.e., a chemoselectivity issue) and with their own inherent *endo*-dig or *exo*-dig preference (i.e., a regioselectivity issue). We therefore decided to use mono-hydroxyalkynes as substrates in a screen to identify regioselective hydroalkoxylation catalysts.

In Table 1, we present our results with alkynol **1b**. Ontrary to expectation, we found that most catalysts delivered

Table 1. Catalyst Screening for the Hydroalkoxylation of 1b

entry	mol % catalyst	time (h)	$\operatorname{yield}^{a}\left(\%\right)$	ratio^a
1^b	1% PdCl ₂	1.5	52	2:1
2	1% MeAuPPh ₃ , 10% TfOH	0.5	40	1.3:1
3	5% ClAuPPh ₃ /AgOTf (1:1)	0.5	36	2:1
4	5% AuCl ₃	0.5	41	2.2:1
5	2% PtCl $_2$	24^c	64	116:1
6	$1\% [Cl_2Pt(CH_2=CH_2)]_2$	0.5	75	30:1

 a Yields (at >95% conversion) and ratios (6-exo:7-endo) determined by GC with an external standard. b MeCN was used instead of Et₂O. c <5% conversion at 30 min.


mixtures resulting from 6-exo-dig and 7-endo-dig cyclization. Thus, PdCl₂ (entry 1), cationic gold(I) (entries 2 and 3) and

(6) Utimoto, K. Pure Appl. Chem. **1983**, 55, 1845.

AuCl₃ (entry 4) afforded rather low yields of *endo/exo* mixtures in ratios ranging from 1.3:1 to 2.2:1.¹¹ Gratifyingly, we found that Pt^{II} salts were effective and 6-*exo* selective hydroalkoxylation catalysts (entries 5 and 6). Although Zeise's dimer was slightly less selective than PtCl₂ (30:1 vs 116:1), it was a more efficient catalyst consuming starting material in less than 30 min at room temperature and 1 mol % catalyst loading.

Compared to substrate **1b**, TBS-protected variant **1c** yielded spiroketal **2**¹⁰ with only a slight reduction in selectivity (20:1 vs 30:1, entries 1 and 2, Table 2) but higher

Table 2. Pt(II)-Catalyzed 6-exo Selective Hydroalkoxylation

entry	R	${ m derivatization}^a$	$\begin{array}{c} { m product} \\ { m (ratio)}^b \end{array}$	yield (%) ^b
1	OTHP (1b)	CSA, MeCN/H ₂ O; MgSO ₄	2:3 (30:1)	75
2	OTBS $(1c)$	CSA, MeCN/H ₂ O; MgSO ₄	2 : 3 (20:1)	83
3	OTBS $(1c)$	THF/H ₂ O, 23 °C, 5 min	4c:5c (30:1)	84
4	OAc(1d)	PPTS, MeOH, HC(OMe) ₃	6d:7d (13:1)	94
5	n-Pr (1e)	PPTS, MeOH, HC(OMe) ₃	6e:7e (7:1)	92
6	$n\text{-}\mathrm{Pr}\:(\mathbf{1e})$	THF/H ₂ O, 23 °C, 5 min	4e:5e (7:1)	87

 a See the Supporting Information for details. b Total yield and *endo:exo* ratio (2:3, 4:5, or 6:7) determined by GC with an external standard (entries 1 and 2), NMR (entries 4–6), or isolated yield (entry 3).

overall yield (83% vs 75%). Alternatively, the addition of moist THF upon completion of the Pt^{II}-catalyzed cycloisomerization of **1c** yielded δ -hydroxyketone **4c** in 84% yield (30:1; entry 3), demonstrating the stability of the TBS-protecting group to the reaction conditions. Similar conditions yielded δ -hydroxyketone **4e** from 4-dodecynol (**1e**) (entry 6). Entries 4 and 5 show that methylacetals are also accessible in high yields by the addition of an acidic MeOH/HC(OMe)₃ solution after completion of the cycloisomerization.

Having found a solution for the 6-exo selective hydroalkoxylation, we next examined the more intricate 5-exo/6endo problem associated with the hydroalkoxylation of 4-alkynols. As shown in Table 3, Pt^{II}-catalyzed hydroalkoxylation of **8b-g** followed by derivatization as before¹⁰ furnished the corresponding spiroketals **2**, **3** and methylacetals **6d-g**, **9d-g** favoring the 6-endo derived products (entries 1–7). Interestingly, δ -tetrahydropyranyloxy substitution has a beneficial impact on endo-selectivity (9–11:1; entries 1 and 2), followed to a lesser extent by silyloxy substitution (entry 3, 3.7:1). Acetoxy, methoxy, and (meth-

4908 Org. Lett., Vol. 8, No. 21, 2006

⁽⁴⁾ For examples catalyzed by gold(I): (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415. (b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563. (c) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol. Catal. 2004, 212, 35. By gold(III): (d) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. By platinum(II): (e) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C. Inorg. Chim. Acta 1994, 222, 317. (f) Kataoka, Y.; Matsumoto, O.; Tani, K. Organometallics 1996, 15, 5246. (g) Hartman, J. W.; Sperry, L. Tetrahedron Lett. 2004, 45, 3787. By palladium(II): (h) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127.

⁽⁵⁾ For regionselective hydration controlled by participation of keto or ether neighboring groups, see ref 4e,h.

⁽⁷⁾ For a Pt^{II}-catalyzed hydration of 3- and 4-pentyn-1-ol, see: Lucey, D. W.; Atwood, J. D. *Organometallics* **2002**, *21*, 2481.

⁽⁸⁾ For a nice application in total synthesis, see: Trost, B. M.; Horne, D. B.; Woltering, M. J. *Angew. Chem.*, *Int. Ed.* **2003**, *42*, 5987.

⁽⁹⁾ No experimental details regarding isolation, purification, and determination of selectivity were provided in the Utimoto paper.⁶ We added camphorsulphonic acid and MgSO₄ at the end of the reaction to ensure complete conversion to the spiroketals (>95%) for GC analysis.

⁽¹⁰⁾ All reactions documented in Tables 1–3 (aprotic solvents) yielded mixtures of cycloisomerization products (*endo*-enol and *E/Z*-mixtures of *exo*-enol ethers). These were derivatized after completion of the reaction to spiroketals (Tables 1–3) or acetals (Tables 2 and 3) to facilitate GC and NMR analyses.

⁽¹¹⁾ Triflic acid, AgOTf, ClAuPPh₃, and PdCl₂(PhCN)₂ were all incompetent catalysts for the cycloisomerization of **1b**.

Table 3. Metal-Catalyzed Hydroalkoxylation of 4-Alkynols^{a,b}

HO (1)3 1. cat., solvent, 23 °C 1. cat., solvent, 23 °C 2. A: CSA, aq. MeCN; MgSO₄ or B: PPTS, MeOH, HC(OMe)₃ 2.
$$n=m=1$$
 6d-g: $n=1$, $m=4$ 3. $n=0$, $m=2$ 9d-g: $n=0$, $m=5$

entry	R	${ m catalyst}^c$	deriv^d	product (ratio) ^e	yield (%)e
1	OTHP (8b)	$[Cl_2Pt(CH_2CH_2)]_2$	A	3:2 (1:11)	70
2	OTHP(8b)	$[Cl_2Pt(CH_2CH_2)]_2\\$	A	3:2 (1:9)	60
3	OTBS $(8c)$	$[Cl_2Pt(CH_2CH_2)]_2$	Α	3:2 (1:3.7)	58
4	OAc (8d)	$[Cl_2Pt(CH_2CH_2)]_2$	В	9d:6d (1:2.3)	93
5	Et (8e)	$[Cl_2Pt(CH_2CH_2)]_2$	В	9e:6e (1:2.3)	85
6	$OMOM\ (\textbf{8f})$	$[Cl_2Pt(CH_2CH_2)]_2\\$	В	9f : 6f (1:2.5)	90
7	OMe (8g)	$[Cl_2Pt(CH_2CH_2)]_2\\$	В	9g:6g (1:1.7)	88
8	Et (8e)	$PdCl_2$	В	9e:6e (2.6:1)	87
9	OH (1a)	$PdCl_{2}(PhCN)_{2}$	Α	3:2 (2:1)	>95
10	Et (8e)	$PdCl_2(PhCN)_2$	В	9e:6e (1:1.3)	90
11	OH (1a)	MeAuPPh ₃ /AgPF ₆	Α	3:2 (3.7:1)	92
12	OTBS(8c)	MeAuPPh ₃ /AgPF ₆	A	3:2 (6.6:1)	73
13	Et (8e)	MeAuPPh ₃ /AgPF ₆	В	9e:6e (6:1)	90
14	$OMOM\ (\textbf{8f})$	MeAuPPh ₃ /AgPF ₆	В	9f:6f (4:1)	94

 a Reactions at 23 °C in Et₂O (entries 2–7, 9, 10), dioxane (entry 1), $^i\mathrm{Pr}_2\mathrm{O}$ (entries 11–14), or refluxing aq MeCN (entry 8). b Reaction time was 30 min (entries 1–8, 11), 13 h (entries 12–14), or 3 h (entries 9, 10). c Catalyst loading: 1% (entries 1–7, 11), 5% (entries 8, 12–14), and 3% (entries 9, 10). d Derivatization method A: CSA, aq MeCN; then MgSO₄. Method B: PPTS, MeOH, HC(OMe)₃. e Determined by GC (entries 1–3, 9, 11, 12) or by NMR (entries 4–8, 10, 13, 14).

oxymethyl)oxy substituents did not improve selectivity (1.7–2.5:1, entries 4, 6, and 7) versus the alkyl control (2.3:1, entry 5). It is of interest to note that Pd^{II}-catalyzed cycloisomerization of 4-undecynol (**8e**) was only marginally 5-*exo* selective with PdCl₂ (entry 8) and nonselective with PdCl₂(PhCN)₂ (entry 10), contrasting with reported results.^{6,12}

After an extensive screen, we found that a MeAuPPh₃/AgPF₆ combination functions as an effective catalyst for the cycloisomerization of 4-alkynols with 5-*exo* selectivities ranging from 4:1 to 6–6.6:1 (Table 3, entries 12–14).¹³ This catalyst combination also provided better 5-*exo* selectivity than Pd^{II} for the cycloisomerization of 4-nonyne-1,9-diol (compare entries 9 and 11).^{6,9}

Having identified conditions for efficient 6-exo, 5-exo, and 6-endo selective cycloisomerizations of internal alkynols, we became interested in the possibility to effect a tandem cycloisomerization/acetal formation to obtain acetals directly. ^{10,14} To this end, various methylacetals were generated with good 6-exo selectivity upon reaction of 5-alkynols with 5 equiv of MeOH in the presence of 1% [Cl₂Pt(CH₂=CH₂)]₂

Table 4. Tandem Cycloisomerization/Acetal Formation^a

entry		substrate	major product	ratio ^b	yield (%)°
1	\bigcap_{R}	R = OTHP; R' = H		11:1	92 (86) ^d
2		R = OTBS; R' = H	R(CH ₂)4 TO R'	14:1	90 (88) ^d
3	ОН	R = OMe; R' = H	6- <i>exo</i>	12:1	93
4	R'	R = OAc; R' = H	0-670	21:1	90
5	IX.	R = n-Pr; R' = H		11:1	96
6		R = OTBS; R' = Me		>20:1	82 (78) ^d
7		R = n-Pr; R' = i-Pr		>20:1	96
8°		R = Et; R' = CH ₂ OH	Hex	>100:1	99 (92) ^d
9	R	R = Hex	Hex OMe 5-endo	>100:1	95
10	\nearrow R	R = OTBS		1.5:1 ^f	98
11		R = OAc	R(CH ₂) ₅ OMe	1.7:1	94
12		R = Et	5-exo	1.4:1 ^f	99
13 ^g	HO	R = Et		4.3:1	90

^a Reaction conditions: alkynol (1.0 equiv), MeOH (5.0 equiv), [Cl₂Pt(CH₂CH₂)]₂ (1.0 mol %), THF:HC(OMe)₃ (10:1, 0.2 M), 23 °C, 10−30 min. ^b Ratio (NMR) of 6-exo vs 7-endo products (entries 1−7), and 5-exo vs 6-endo products (entries 10−13). ^c Determined by NMR. ^d Isolated yield. ^e Reaction in THF only. ^f The 6-endo products included 5−18% of the corresponding dihydropyrans. ^g Reaction run with 5% MeAuPPh₃/AgPF₆ (1:1) in Et₂O:HC(OMe)₃ (10:1) for 40.5 h.

in a THF:HC(OMe)₃ (10:1) solvent mixture (Table 4, entries 1–7). This reaction is very fast and no dihydropyran products could be detected. Entries 1–4 demonstrate that various alcohol protecting groups, including the labile THP-ether, were stable to the reaction conditions. Furthermore, secondary alcohols were excellent substrates for this reaction and provided products resulting from excellent 6-exo selectivity and anomeric stabilization (entries 6 and 7). Entry 8 demonstrates the possibility of obtaining bicycloketals when cyclized intermediates can be trapped intramolecularly. Not surprisingly, 3-decynol provided 2-hexyl-2-methoxytetrahydrofuran via a 5-endo pathway (entry 9).

Finally, reaction of 4-alkynols was nonselective to mildly 5-*exo*-selective (Table 4, entries 10–12), whereas the corresponding cyclizations in anhydrous diethyl ether displayed modest to good 6-*endo* selectivity (Table 3, entries 1–7). Changing to a MeAuPPh₃/AgPF₆ catalyst system did improve somewhat the 5-*exo*-selectivity for this tandem cyclization/methoxylation of 4-alkynols (compare entries 12 and 13). Nevertheless, the highest 5-*exo* selectivities are achieved according to the conditions in Table 3, entries 11–14.

A mechanistic hypothesis consistent with the available data is depicted in Figure 2. Initial coordination of the alkynol to $Pt^{II}(A \rightarrow B)$ activates it for intramolecular attack by the alcohol to yield *endo-C* or *exo-C* adducts.

Deprotonation followed by reprotonation at carbon would then deliver the transient platinated oxocarbenium species

Org. Lett., Vol. 8, No. 21, 2006

⁽¹²⁾ With the same substrate and reaction conditions that we used in this study, Utimoto⁶ reports 95% 6-endo selectivity with PdCl₂(PhCN)₂, and 95% 5-exo selectivity with PdCl₂.

⁽¹³⁾ To the best of our knowledge, this catalyst combination has not been reported. The optimal solvent is ${}^{i}\text{Pr}_{2}\text{O}$, yielding a 10-20% increase in selectivity versus $E_{2}\text{O}$. Upon mixing MeAuPPh3 and AgPF6, a black precipitate forms that can be filtered. The remaining solution retains full catalytic activity with similar selectivity. Other Ag^{I} salts gave lower yields and selectivities and MeAuPPh3 or AgPF6 alone were catalytically incompetent. Cationic gold(I) complexes generated from halide abstraction of ClAuPPh3 with various Ag^{I} salts gave lower yields and selectivities.

⁽¹⁴⁾ ¹H NMR analysis of the cycloisomerization of 5-dodecyn-1-ol (**1e**) in THF- d_8 at low conversion revealed the presence of detectable levels of 2-heptyl-2-dodec-5-ynyloxy tetrahydropyran, indicating that acetals could be formed directly under the reaction conditions.

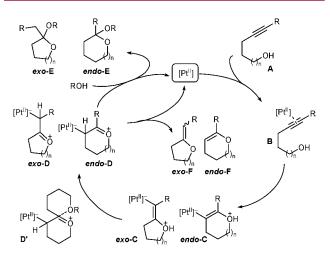


Figure 2. A mechanistic hypothesis.

exo-D and endo-D. In the absence of MeOH, we propose this proton transfer to be the rate-limiting and selectivitydetermining step (i.e. exo-C and endo-C can establish a preequilibrium via **B**), favoring the formation of the 6-endoisomer (endo-**D**, n = 1) to the extent of 2.3:1 (Table 3, entry 5). Deplatination leads to the cycloisomerization products exo-F and endo-F. Certain alkoxy-functionality can further enhance 6-endo-selectivity (up to 9:1; Table 3, entry 2), perhaps via stabilization of charge build-up in the transition state leading to endo-D (see D'). 15,16 In the presence of MeOH, proton transfer is fast and cyclization to C becomes rate limiting: 5-exo addition is favored slightly over 6-endo addition and independent of alkoxy functionality (Table 4, entries 10-12). Now, methoxylation precedes deplatination to yield methylacetals exo-E and endo-E, completing the catalytic cycle.¹⁷

Additional evidence indicates that enol ethers (**F**) are not intermediates en route to acetals **E**.¹⁸ First, 6-heptyl-3,4-dihydro-2*H*-pyran (*endo*-**F**, n=1, R = heptyl) was recovered unchanged when subjected to the same reaction conditions

that gave a 96% yield of 2-heptyl-2-methoxy-tetrahydro-2H-pyran from alkynol **1e** (Table 4, entry 5). Moreover, the Pt^{II}-catalyzed tandem cycloisomerization/hydromethoxylation of 4-pentyn-1-ol (**10**) in CD₃OD afforded uniquely [D₅]-2-MeO-2-Me-tetrahydrofuran (**11**) after 3 min at room temperature (Scheme 2). Stirring the reaction mixture for an

Scheme 2. Deuterium Labeling Experiment

Pt(II)

$$D = \begin{bmatrix} Pt^{II} \end{bmatrix} - D = \begin{bmatrix} Pt^{II} \end{bmatrix}$$

additional 19 h gave **13** with additional deuterium incorporation at the methyl carbon (12% D) and at the C₃-methylene carbon (28% D). These results rule out the intermediacy of enol ether [D₁]-**F** for the fast formation of **11**, as this would lead to H/D scrambling via oxocarbenium **12** as observed for the slower formation of **13** from **11**.

In conclusion, we have developed efficient protocols for the Pt^{II}- and Au^I-catalyzed oxy-functionalization of unactivated internal alkynes. Zeise's dimer ([Cl₂Pt(CH₂=CH₂)]₂) was identified as an efficient and selective catalyst for the intramolecular hydroalkoxylation of 5-alkynols and 3-alkynols. For the 5-exo selective cycloisomerization of 4-alkynols, we identified a new catalyst combination obtained by premixing MeAuPPh₃ and AgPF₆. The studies reported herein also have led to an efficient tandem hydroalkoxylation/acetal formation and include experiments that provided initial mechanistic insight into this process. Additional mechanistic studies and applications of this methodology to natural product synthesis will be reported in the future.

Acknowledgment. Financial support was provided by the Robert A. Welch Foundation and Merck Research Laboratories.

Supporting Information Available: Experimental procedures, characterization data, GC chromatograms, and copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0619819

4910 Org. Lett., Vol. 8, No. 21, 2006

⁽¹⁵⁾ At this moment, we speculate that OTHP is better at stabilizing developing positive charge. For the proton transfer leading to exo-D (n = 1), stabilization of charge build-up through a seven-membered interaction would be less efficient.

⁽¹⁶⁾ In agreement with this analysis, the 6-endo selectivity observed for the Pt^{II} -catalyzed cyclization of $\mathbf{8b}$ in Et_2O (9:1, Table 3, entry 2) eroded to 2.7:1 when performed in THF, i.e., the level of that observed for cyclization of $\mathbf{8e}$ (2.3:1, Table 3, entry 5).

⁽¹⁷⁾ A bifurcation between acetal formation (\rightarrow **E**) and direct deplatination (\rightarrow **F**) is supported by the following observation: reaction of **1e** with 1% [Cl₂Pt(CH₂=CH₂)]₂ in THF with the more hindered 2-propanol (5 equiv) yielded a 1:1 mixture of 6-heptyl-3,4-dihydro-2*H*-pyran and 2-heptyl-2-isopropoxytetrahydro-2*H*-pyran, whereas no dihydropyran product was observed with methanol as the trapping nucleophile under otherwise identical conditions.

⁽¹⁸⁾ Others have suggested that addition of the second alcohol could occur on metal-bound intermediates, see refs 2b, 2f, and 4g. For the cationic gold(I)-catalyzed double hydromethoxylation of alkynes, ab initio calculations located an aurated species similar to platinated oxocarbenium intermediate \mathbf{D} , see ref 4a.